Abstract Submitted for the MAR17 Meeting of The American Physical Society

 $Bi-2212/TaS_2$ Van der Waals Junctions: Interplay of proximity induced high- T_c Superconductivity and CDW order¹ ANG LI, XIAOCHEN ZHU, GREGORY STEWART, ARTHUR HEBARD, Univ of Florida - Gainesville, ARTHUR F. HEBARD TEAM, GREGORY R. STEWART COLLABORATION — We present an experimental observation of high- T_c superconducting proximity effect by using four-terminal current-voltage measurements to study the Van der Waals interface between freshly exfoliated flakes of the high- T_c superconductor, Bi-2212, and the CDW-dominated TMD layered material, 1T-TaS₂. For highly transparent barriers, there is a pronounced Andreev reflection feature providing evidence for proximity-induced high- T_c superconductivity in 1T-TaS₂ with a surprisingly large energy gap ($\sim 20 \text{meV}$) equal to half that of intrinsic Bi-2212 ($\sim 40 \text{meV}$). Our systematic study using conductance spectroscopy dI/dV of junctions with different transparencies also reveals the presence of two separate boson modes, each associated with a "dip-hump" structure. We infer that the proximity-induced high- T_c superconductivity in the TaS_2 is driven by coupling to the metastable metallic phase coexisting within the Mott-CCDW (commensurate CDW) phase.

¹Work supported by NSF DMR #1305783

Ang Li Univ of Florida - Gainesville

Date submitted: 07 Nov 2016

Electronic form version 1.4