Microwave Spectroscopic Investigation of the Superconductor Insulator Transition in a Strongly Disordered Superconductor1 YOUCHENG WANG, Department of Physics and Astronomy, Institute for Quantum Matter, Johns Hopkins University, IDAN TAMIR, DAN SHAHAR, Department of Condensed Matter Physics, Weizmann Institute of Science, N. P. ARMITAGE, Department of Physics and Astronomy, Institute for Quantum Matter, Johns Hopkins University — Superconductor insulator transitions (SIT) driven by disorder or perpendicular magnetic field in 2D disordered superconductor thin films is a prototypical example of a quantum phase transition. There can be a field-tuned transition, as $T \to 0$, from vortex glass (superconductor) to Cooper pair glass (insulator) wherein vortices Bose condense and delocalize. Here we measure the complex dynamical response within a broadband of frequencies ($50 \text{MHz} - 10 \text{GHz}$) of a strongly disordered InO_x thin film across its SIT using Corbino microwave spectroscopy. We report the frequency dependence of complex conductance and the critical behavior of superfluid density and fluctuation rate, along with the temperature and field dependence of DC sheet resistance.

1The research at JHU was supported by NSF DMR-1508645