Size, Shape and Impurity Effects on Superconducting critical temperature.1 MASAKI UMEDA, MASARU KATO, Osaka Prefecture University, OSAMU SATO, Osaka Prefecture University Colledge of technology — Bulk superconductors have their own critical temperatures T_c. However, for a nanostructured superconductor, T_c depends on size and shape of the superconductor \cite{1}. Nishizaki showed that the high pressure torsion on bulks of Nb makes T_c higher, because the torsion makes many nano-sized fine grains in the bulks \cite{2}. However the high pressure torsion on bulks of V makes T_c lower, and Nishizaki discussed that the decrease of T_c is caused by impurities in the bulks of V. We studied size, shape, and impurity effects on T_c, by solving the Gor’kov equations, using the finite element method. We found that smaller and narrower superconductors show higher T_c. We found how size and shape affects T_c by studying spacial order parameter distributions and quasi-particle eigen-energies \cite{3}. Also we studied the impurity effects on T_c, and found that T_c decreases with increase of scattering rate by impurities. \cite{1} H. Suematsu, M. Kato and T. Ishida, J. Phys.: Conf. Ser. 150 (2009) 052250. \cite{2} T. Nishizakiet al., Physica C 493 (2013) 132. \cite{3} M. Umeda, M. Kato, O.Sato IEEE Trans. Appl. Supercond. 26 (2016) 8600104.

1This work was supported in part of KAKENHI Grant Number JP26400367 and JP16K05460, and program for leading graduate schools of ministry of education, culture, sports, science and technology-Japan.

Masaki Umeda
Osaka Prefecture University

Date submitted: 08 Nov 2016
Electronic form version 1.4