Theoretical modeling of critical temperature increase in metamaterial superconductors

IGOR SMOLYANINOV, University of Maryland, VERA SMOLYANINOVA, Towson University — Recent experiments have demonstrated that the metamaterial approach is capable of drastic increase of the critical temperature \(T_c \) of epsilon near zero (ENZ) metamaterial superconductors. For example, tripling of the critical temperature has been observed in Al-Al\(_2\)O\(_3\) ENZ core-shell metamaterials. Here, we perform theoretical modelling of \(T_c \) increase in metamaterial superconductors based on the Maxwell-Garnett approximation of their dielectric response function. Good agreement is demonstrated between theoretical modelling and experimental results in both aluminum and tin-based metamaterials. Taking advantage of the demonstrated success of this model, the critical temperature of hypothetic niobium, MgB\(_2\) and H\(_2\)S-based metamaterial superconductors is evaluated. The MgB\(_2\)-based metamaterial superconductors are projected to reach the liquid nitrogen temperature range. In the case of an H\(_2\)S-based metamaterial \(T_c \) appears to reach \(\sim 250 \) K.

\(^1\)This work was supported in part by NSF grant DMR-1104676 and the School of Emerging Technologies at Towson University.