Abstract Submitted for the MAR17 Meeting of The American Physical Society

High mobility La-doped $BaSnO_3$ on non-perovskite MgO substrate¹ YOUJUNG KIM, JUYEON SHIN, YOUNG MO KIM, KOOKRIN CHAR, Seoul Natl Univ — $(Ba,La)SnO_3$ is a transparent perovskite oxide with high electron mobility and excellent oxygen stability. Field effect device with (Ba,La)SnO₃ channel was reported to show good output characteristics on STO substrate. Here, we fabricated $(Ba,La)SnO_3$ films and field effect devices with (Ba,La)SnO₃ channel on non-perovskite MgO substrates, which are available in large size wafers. X-ray diffraction and transmission electron microscope (TEM) images of (Ba,La)SnO₃ films on MgO substrates show that the films are epitaxial with many threading dislocations. (Ba,La)SnO₃ exhibits the high mobility with 97.2 cm²/Vs at 2% La doping on top of 150 nm thick BaSnO₃ buffer layer. Excellent carrier modulation was observed in field effect devices. FET performances on MgO substrates are slightly better than those on $SrTiO_3$ substrates in spite of the higher dislocation density on MgO than on SrTiO₃ substrates. These high mobility BaSnO₃ thin films and transistors on MgO substrates will accelerate development for applications in high temperature and high power electronics.

¹Samsung Science and Technology Foundation

Youjung Kim Seoul Natl Univ

Date submitted: 09 Nov 2016

Electronic form version 1.4