Abstract Submitted for the MAR17 Meeting of The American Physical Society

 α -MnO₂ Nanorod-composites as Electrode Material for Supercapacitors PRASADA RAO TALAKONDA, AJAY KUMAR, Wayne State University, VAMAN M. NAIK, University of Michigan, Dearborn, RATNA NAIK, Wayne State University — MnO₂-based supercapacitors as electrochemical storage systems have attracted immense interest due to their low cost, natural abundance, high theoretical specific capacitance and environmental friendliness. We have synthesized α -MnO₂ and α -MnO₂/CNF (carbon nanofibers, 5 wt%) nanocomposites using coprecipitation method. The XRD results confirm the formation of a single phase α -MnO₂ and SEM, TEM studies reveal the formation of nanorods of α -MnO₂, but with a larger size in the case of α -MnO₂-CNF nanocomposites. Pure α -MnO₂ shows a larger surface area (266 m/g), and lower electrical conductivity (0.02 S/cm) compared to that of α -MnO₂-CNF (131 m/g, 0.67 S/cm). Cyclic voltammetry (CV) studies and galvanostatic charge/discharge studies have been performed on α -MnO₂ nanocomposites, coated on Ni foam, using a potential ranging from -0.02 to 0.8 V, in a 1 M Na_2SO_4 aqueous solution. The measured specific capacitance of α -MnO₂ is 245 F/g whereas that of α -MnO₂-CNF is 192 F/g. Although, the electrical conductivity of α -MnO₂-CNF is higher than that of α -MnO₂, its observed lower specific capacitance is attributed to its reduced surface area compared to α -MnO₂. Currently, we are optimizing the amount of CNF in α -MnO₂-CNF nanocomposites to enhance supercapacitor performance.

> Prasada Rao Talakonda Wayne State University

Date submitted: 29 Nov 2016

Electronic form version 1.4