Enhanced Thermal Transport along the Nodal Direction of d-wave Superconductor CeCoIn$_5$1 ROMAN MOVSHOVICH, DUK Y. KIM, SHIZENG LIN, FRANZISKA WEICKERT, ERIC D. BAUER, FILIP RONNING, J. D. THOMPSON, Los Alamos National Laboratory — Four-fold oscillation in thermal conductivity with respect to the direction of the magnetic field is a strong evidence of a d-wave superconductivity. Previously, a smooth oscillation was found when the thermal conductivity of unconventional superconductor CeCoIn$_5$ was measured along $[100]$, the anti-nodal direction for its $d_{x^2-y^2}$-wave order parameter, with magnetic field rotating in the ab-plane. We present measurements of the thermal conductivity in CeCoIn$_5$ with the heat current along the $[110]$, nodal, direction. A sharp resonance-like peak in thermal conductivity was observed when the magnetic field is also in the $[110]$ direction, parallel to the heat current. We can qualitatively understand this zero-angle resonance within the present theory for the heat transport in d-wave superconductors. The theory, however, fails to quantitatively reproduce the details of the field-evolution of the data. The contribution of the vortex core states and Pauli limiting effect should be considered to develop a realistic theory for the thermal transport in unconventional superconductors.

1Work at Los Alamos was performed under the auspices of the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering.

Roman Movshovich
Los Alamos National Laboratory