Abstract Submitted for the MAR17 Meeting of The American Physical Society

Isotope effect in superconducting n-doped SrTiO₃ ADRIEN STUCKY, GERNOT SCHEERER, ZHI REN, DIDIER JACCARD, JEAN-MARIE POUMIROL, CLINE BARRETEAU, ENRICO GIANNINI, DIRK VAN DER MAREL, University of Geneva, Department of Quantum Matter Physics, Geneva — Since the discovery of superconductivity in n-doped $SrTiO_3$ half a century ago, this material has played a key role in modern condensed matter physics, in part for its superconducting properties but also its dielectric properties and suitability as a substrate for thin film growth of high- T_c superconductors. We report the influence on the superconducting critical temperature in doped SrTiO₃ of the substitution of the natural ${}^{16}O$ atoms by the heavier isotope ${}^{18}O$. We have found a huge increase of the T_c around 50% and an enhancement by a factor ~ 2 of the critical magnetic field H_{c2} for all charge carrier densities. Such a strong impact on T_c and H_{c2} , with a sign opposite to conventional superconductors, is unprecedented. Alternative models which take into account the presence of polarons in $SrTiO_3$ or the vicinity of a quantum critical point due to ferroelectric state are now considered and discussed to explain this behavior. Indeed, the unusually large size of the observed isotope effect supports a recent model for superconductivity in these materials based on strong coupling to the ferroelectric soft modes of SrTiO₃.

> Adrien Stucky University of Geneva

Date submitted: 09 Nov 2016

Electronic form version 1.4