Determining the diffusivity of H_i^{+} in In_2O_3 single crystals for over ten decades\(^1\) MICHAEL STAVOLA, PHILIP WEISER, YING QIN, KARLA VIL-LALTA, W. BEALL FOWLER, Lehigh University, LYNN BOATNER, Oak Ridge National Laboratory — Interstitial hydrogen (H_i^{+}) is an n-type dopant in In_2O_3 that has attracted attention for solar-cell applications [1]. An IR absorption line observed at 3306 cm\(^{-1}\) for In_2O_3 single crystals annealed in an H_2 ambient has been assigned to the H_i^{+} center [2]. Two types of experiments have been performed to determine the diffusivity of H_i^{+} in In_2O_3. At temperatures near 673 K, experiments have been performed to determine the diffusivity of H_i^{+} from its indiffusion depth into In_2O_3. At 165 K, stress can be used to produce a preferential alignment of the H_i^{+} center. With the help of theory, the kinetics with which this alignment can be produced yield the time constant for a single jump of the H_i^{+} center and also the diffusivity of H_i^{+} at 165 K [3]. These data determine the diffusivity for H_i^{+} for over ten decades! [1] T. Koida et $al.$, Jpn. J. Appl. Phys. 46, L685 (2007). [2] W. Yin et $al.$, Phys. Rev. B 91, 075208 (2015). [3] P. Weiser et $al.$, Appl. Phys. Lett., in press.

\(^1\)Supported by NSF grant DMR 1160756

Michael Stavola
Lehigh University

Date submitted: 09 Nov 2016

Electronic form version 1.4