Defect formation on MoS$_2$ via methanol to methoxy conversion1

PRESCOTT EVANS, HAE KYUNG JEONG, SUMIT BENIWAL, PETER DOWBEN, University of Nebraska - Lincoln, LUDWIG BARTELS, University of California, Riverside, DUY LEY, TALAT RAHMAN, University of Central Florida — Coverage dependent defect formation, via methanol adsorption on MoS$_2$ and conversion into methoxy, was investigated utilizing scanning tunneling microscopy. Low Temperature adsorption of methanol on MoS$_2$ at 110 K followed by annealing of the sample near 350 K conversion as well as adsorption of methanol on MoS$_2$ at 350 K results in the formation of numerous point defects at the surface of the MoS$_2$ substrate. Larger multi-point defects, nominally ~1 nm in size as well as line defects on the MoS$_2$ sample surface become increasingly apparent with multiple cycles of methanol exposure and annealing. Preliminary luminescence studies of extensive methanol exposure to MoS$_2$ supports defect formation in MoS$_2$ monolayers, based on the significant quenching of luminescence. Temperature dependent luminescence of micro-particles of MoS$_2$ with excess methanol again indicate compositional changes and defect formation of MoS$_2$ via observed color change of material and sharp quenching of luminescence near the 350 K conversion temperature. The experimental results will be compared with density functional theory.

1Funded under U.S. Department of Energy grant DE-FG02-07ER15842

Prescott Evans
University of Nebraska - Lincoln

Date submitted: 09 Nov 2016