Abstract Submitted for the MAR17 Meeting of The American Physical Society

Li₁₄(PON₃)₂O: Computational study of a possible new electrolyte for Li ion batteries¹ AHMAD AL-QAWASMEH, N. A. W. HOLZWARTH, Wake Forest Univ — Recently, Li₁₄(PON₃)₂O, containing Li₆PON₃ and Li₂O groups within a trigonal crystal structure (space group $P\bar{3}$ (#147)) has been synthesized by Baumann and Schnick.² We report the results of a first principles computational study of this material in comparison with other crystalline electrolytes having LiPON composition and iosolated tetrahedral oxonitridophosphate ions such as Li₃PO₄ and Li₇PN₄. The structure of Li₁₄(PON₃)₂O is characterized by a relatively large Li ion density (0.07 Li/Å³) which is between that of Li₃PO₄ (0.04 Li/Å³) and Li₂O (0.09 Li/Å³). Using a nudged elastic band approach, we find Li ion migration barriers in Li₁₄(PON₃)₂O to be comparable or lower than those of Li₃PO₄ and Li₇PN₄. The most efficient migration appears to occur via a vacancy mechanism with net motion within planes perpendicular to the c-axis in the vicinity of the O sites. Models of interfaces of Li₁₄(PON₃)₂O with Li metal were also studied.

¹Supported by NSF grant DMR-1507942 and WFU's DEAC cluster. ²Baumann and Schnick, **Eur. J. Inorg. Chem. 2015**, 617-621 (2015)

> Ahmad Al-Qawasmeh Wake Forest Univ

Date submitted: 09 Nov 2016

Electronic form version 1.4