Abstract Submitted for the MAR17 Meeting of The American Physical Society

Bridging the Gap Between Stationary Homogeneous Isotropic Turbulence and Quantum Mechanics¹ SIAVASH SOHRAB, Northwestern University — A statistical theory of stationary isotropic turbulence 1 is presented with eddies possessing Gaussian velocity distribution, Maxwell-Boltzmann speed distribution in harmony with perceptions of Heisenberg 2 , and Planck energy distribution in harmony with perceptions of Chandrasekhar³ and in agreement with experimental observations of Van Atta and Chen (J. Fluid Mech. 34 (3) 497-515, 1968). Defining the action $S = -m\Phi$ in terms of velocity potential of atomic motion, scale-invariant Schrödinger equation is derived¹ from invariant Bernoulli equation. Thus, the gap between the problems of turbulence and quantum mechanics is closed through connections between Cauchy-Euler-Bernoulli equations of hydrodynamics, Hamilton-Jacobi equation of classical mechanics, and finally Schrödinger equation of quantum mechanics. Transitions of particle (molecular cluster c_{ji}) from a small rapidly-oscillating eddy e_i (high-energy level-j) to a large slowly-oscillating eddy e_i (low energy-level-i) leads to emission of a sub-particle (molecule m_{ii}) that carries away the excess energy $\varepsilon_{ji} = h(\nu_j - \nu_i)$ in harmony with Bohr theory of atomic spectra. \\ ¹ Sohrab, S. H., Chaotic Modeling and Simulation (CMSIM) 3, 231-245 (2016).² Heisenberg, W., Proc. Roy. Soc. A **159**, 402-406 (1948).³ Chandrasekhar, S., Stochastic, Statistical, and Hydrodynamic Problems in Physics and Astronomy, Selected Papers, vol.3, University of Chicago Press, Chicago, 515-528, 1989.

¹NASA grant No. NAG3-1863

Siavash Sohrab Northwestern University

Date submitted: 09 Nov 2016

Electronic form version 1.4