Excited States and Optical Spectra Based on GW-BSE: Dimensionality and Screening1

STEVEN G. LOUIE, Univ of California - Berkeley and Lawrence Berkeley National Lab

In this talk, I discuss some recent developments and applications of first-principles GW plus Bethe Salpeter equation (GW-BSE) approach to the understanding and prediction of photo-excited states, optical responses, and related spectroscopic properties of materials, in particular atomically thin two-dimensional (2D) crystals. Owing to their reduced dimensionality, quasi-2D materials and their nanostructures can exhibit highly unusual behaviors. Symmetry, many-body interactions, doping, and substrate screening effects play a critical role in shaping qualitatively and quantitatively their excited-state properties. Accurate treatment of these effects, in particular many-electron interactions, poses new theoretical and computational challenges. I will present some new developments in addressing these challenges, and present studies on monolayer and few-layer transition metal dichalcogenides and metal monochalcogenides, as well as black phosphorus and other 2D crystals. Several highly interesting and unexpected phenomena are discovered: unusual excitonic level structures and optical selection rules; exchange-induced light-like (massless) exciton dispersion in 2D; tunable optical and plasmonic properties; and the dominant influence of substrate screening.

1I would like to acknowledge collaborations with members of the Louie group. This work was supported by U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences Engineering Division, and by National Science Foundation.