Band-gap switching and scaling of nanoporous graphene.

HAIYUAN CHEN, XIAOBIN NIU, University of Electronic Science and Technology of China, Chengdu 610054, PR China, INTERNATIONAL CENTER FOR ARTIFICIAL MATERIALS TEAM — A framework of \(\{w_1, w_2, R\} \) classification for constructing the graphene nanomesh (GNM) of zigzag-edged hexagonal nanohole is systematically built. Three integer indexes \(w_1, w_2, \) and \(R \) indicate the distances between two neighboring sides of nanoholes in two directions and the nanohole size respectively, which leading to a straightforward gap opening criteria, i.e., \(w_1+w_2-R=3n+1, n \in \mathbb{Z} \), steered via DFT band structure calculations. The guiding rule indicates that the semimetallic and semiconducting variation is consistent with a peculiar sequence 010 and 100 (0/1 represent gap closure/opening) with a period of 3 for odd and even \(w_1 \) respectively. The periodic nanoporation induced gap sizes agree with a linear fitting with a smaller \(\sqrt{N_{\text{rem}}}/N_{\text{tot}} \) ratio, while deviates from that when \((w_1+w_2)<R+1 \). Particularly, the \(\{p, 1, p\} \) and \(\{1, q, q\} \) structures demonstrate each unique scaling rule pertaining to the nanohole size only when \(n \) is set to zero. Furthermore, the coexistence of Dirac and flat bands is observed for \(\{1, q, q\} \) and \(\{1, 1, m\} \) structures, which is sensitive to the atomic pattern.