Quantum Criticality and 2-D dissipative quantum XY ferromagnetism in single crystalline YFe2Al10 from MuSR investigations

KEVIN HUANG, CHENG TAN, JIAN ZHANG, ZHAOFENG DING, Fudan University, DOUGLAS MACLAUGHLIN, University of California, Riverside, OSCAR BERNAL, California State University, Los Angeles, PEI-CHUN HO, California, State University, Fresno, L. WU, MEIGAN ARONSON, Stony Brook University, LEI SHU, Fudan University — We have performed Muon spin relaxation (μSR) measurements on single crystalline YFe$_2$Al$_{10}$ down to 19 mK and in magnetic fields up to \sim100 Oe with fields applied along the b-axis and c-axis. Zero-field-μSR measurements showed no evidence of magnetic order down to 19 mK, consistent with previous measurements. Interestingly we also find that the depolarization rate Λ is temperature independent above 1 K but displays a strong diverging temperature dependence for $T < 1$ K, different than what was observed for polycrystals of YFe$_2$Al$_{10}$. Longitudinal-field μSR measurements also reveals a time-field scaling for multiple temperatures in fields up to 200 Oe. From this work we find that single crystalline YFe$_2$Al$_{10}$ is in close proximity to a ferromagnetic quantum critical point and find evidence that it is the first experimental realization of a 2-D dissipative XY-model ferromagnet.

1National Natural Science Foundation of China under Grant no. 11474060 and STCSM of China (No. 15XD1500200). Work at CSULA funded by NSF/DMR-1523588. Research at CSU-Fresno is supported by NSF DMR-1506677

Kevin Huang
Fudan Univ

Date submitted: 10 Nov 2016

Electronic form version 1.4