Abstract Submitted for the MAR17 Meeting of The American Physical Society

Dielectric characteristics of Mn-doped LaTiO_{3+ δ} ceramics. YAN CHEN, YIMIN CUI, BeiHang University — A series of ceramic composites of Mndoped $\text{La}_{1-x}\text{Mn}_x\text{TiO}_{3+\delta}$ and $\text{LaMn}_x\text{Ti}_{1-x}\text{O}_{3+\delta}$ (x = 0.1, 0.2) were synthesized by conventional solid-state reaction method. The low-frequency complex dielectric properties of the composites were investigated as functions of temperature (77 K < $T \leq 360$ K) and frequency (100 Hz \leq $f \leq 1$ MHz), respectively. The dielectric constant of A-site doped samples is higher than that of B-site doped samples. The loss tangent of low doped samples is much less than that of high doped samples. The A-site doped composites exhibit intrinsic dielectric response with a dielectric constant of ~ 40 in the temperature below 250 K. Interestingly, the dielectric constants of B-site doped ceramics increase slightly in the temperature range from 77 to 360 K. And it is clearly observed that extraordinarily high dielectric loss tangent (~6) appear at low frequency (100 Hz) in LaMn_{0.2}Ti_{0.8}O_{3+ δ}, which is ~8 times larger than that of $LaMn_{0.1}Ti_{0.9}O_{3+\delta}$, which indicates that the doped content can affect the intrinsic dielectric characteristics significantly.

> Yimin Cui BeiHang University

Date submitted: 04 Jan 2017

Electronic form version 1.4