Liquid-Liquid Transition in Kitaev Magnets Driven by Spin Fractionalization

JOJI NASU, Tokyo Institute of Technology, YASUYUKI KATO, JUNKI YOSHITAKE, University of Tokyo, YOSHITOMO KAMIYA, RIKEN, YUKITOSHI MOTOME, University of Tokyo — While phase transitions between magnetic analogs of three states of matter — a long-range ordered state, paramagnet, and spin liquid — have been extensively studied, the possibility of “liquid-liquid” transitions, namely, between different spin liquids, remains elusive. By introducing the Ising coupling into the honeycomb Kitaev model with bond asymmetry, we discover that the Kitaev spin liquid becomes a bond-nematic quantum paramagnet before magnetically ordered. The phase transition between the two liquid-like states with different topological nature is of first order, driven by delocalization of the \mathbb{Z}_2 gauge fluxes, and persists to a critical point at finite temperature located inside the regime where quantum spins are fractionalized. It is suggested that similar transitions may occur in other perturbed Kitaev magnets with bond asymmetry.

Joji Nasu
Tokyo Institute of Technology

Date submitted: 10 Nov 2016

Electronic form version 1.4