Superconductivity in the infinite-layer $\text{Sr}_{1-x}\text{Ca}_x\text{CuO}_2$ phase

YOSHIHARU KROCKENBERGER, AI IKEDA, HIDEKI YAMAMOTO, NTT Basic Research Labs — The CuO$_2$ planes are the fundamental building blocks of cuprate superconductors where Cu assumes three types of copper coordinations, i.e., octahedral, pyramidal, and square-planar. For cuprates with the infinite layer structure, Cu is stabilized in a square-planar environment and this structure is known to show superconductivity. The square-planar coordination is also known to cuprates with Nd$_2$CuO$_4$ structure and we have shown earlier that doping is not a relevant parameter in inducing superconductivity, quite in contrast to cuprates with octahedral- or pyramidal coordinated copper. Moreover, for cuprates with infinite-layer structure the induction of superconductivity has been associated to reconstruction processes rather than doping in CaCuO$_2$/SrTiO$_3$ superlattices. Here we show that the superconductivity in $\text{Sr}_{1-x}\text{Ca}_x\text{CuO}_2$ is predominantly subject to defects arising either from cation- and/or oxygen- disorder. Using molecular beam epitaxy we synthesized high quality single crystalline thin films with 100 nm thickness of $\text{Sr}_{1-x}\text{Ca}_x\text{CuO}_2$. High angle annular dark field scanning transmission electron tomographs are used to link the degree of cation disorder in this thermodynamically unstable phase to the induction of superconductivity.

Yoshiharu Krockenberger
NTT Basic Research Labs

Date submitted: 10 Nov 2016

Electronic form version 1.4