Entanglement Chern Number in Tree Dimensions1 HIROMU ARAKI, University of Tsukuba, TAKAHIRO FUKUI, Ibaraki University, YASUHIRO HATSUGAI, University of Tsukuba — We have characterized some of topological phases by the entanglement Chern number (e-Ch), which is defined as the Chern number of the entanglement Hamiltonian.2 The partition of the system is not necessarily spatial but can be spin partition, which is the extensive partition. If a system respects the time reversal symmetry, the Chern number is trivial but the e-Ch can be non-zero. For instance, the e-Ch characterizes the quantum spin Hall phase of the Kane–Mele model and its phase diagram by the \mathbb{Z}_2 topological number is successfully reproduced by the e-Ch.3 For the Fu–Kane–Mele model,4 its weak phases are well described by the non trivial section e-Ch and the strong phase is characterized by the existence of the Weyl points of the entanglement Hamiltonian.5

1This work is partly supported by Grants-in-Aid for Scientific Research, Nos. 26247064, 25107005, and 16K13845 from JSPS.
2T. Fukui and Y. Hatsugai, JPSJ, \textbf{83}, 113705 (2014)
4L. Fu, C. L. Kane and E. J. Mele, PRL, \textbf{98}, 106803 (2007)
5H. Araki, T. Fukui and Y. Hatsugai, in preparation.

Hiromu Araki
University of Tsukuba

Date submitted: 10 Nov 2016

Electronic form version 1.4