Abstract Submitted for the MAR17 Meeting of The American Physical Society

Entanglement Chern Number in Tree Dimensions¹ HIROMU ARAKI, University of Tsukuba, TAKAHIRO FUKUI, Ibaraki University, YA-SUHIRO HATSUGAI, University of Tsukuba — We have characterized some of topological phases by the entanglement Chern number (e-Ch), which is defined as the Chern number of the entanglement Hamiltonian.² The partition of the system is not necessarily spatial but can be spin partition, which is the extensive partition. If a system respects the time reversal symmetry, the Chern number is trivial but the e-Ch can be non-zero. For instance, the e-Ch characterizes the quantum spin Hall phase of the Kane–Mele model and its phase diagram by the Z_2 topological number is successfully reproduced by the e-Ch.³ For the Fu–Kane–Mele model,⁴ its weak phases are well described by the non trivial section e-Ch and the strong phase is characterized by the existence of the Weyl points of the entanglement Hamiltonian.⁵

¹This work is partly supported by Grants-in- Aid for Scientific Research, Nos. 26247064, 25107005, and 16K13845 from JSPS.

²T. Fukui and Y. Hatsugai, JPSJ, 83, 113705 (2014)

³H. Araki, T. Kariyado, T. Fukui and Y. Hatsugai, JPSJ, **85**, 043706 (2016)

⁴L. Fu, C. L. Kane and E. J. Mele, PRL, **98**, 106803 (2007)

⁵H. Araki, T. Fukui and Y. Hatsugai, in preparation.

Hiromu Araki University of Tsukuba

Date submitted: 10 Nov 2016

Electronic form version 1.4