Subcellular Nanoparticle Distribution from Light Transmission Spectroscopy

ALISON DEATSCH, NAN SUN, JEFFREY JOHNSON, SHARON STACK, CAROL TANNER, STEVEN RUGGIERO, University of Notre Dame —

We have measured the particle-size distribution (PSD) of subcellular structures in plant and animal cells. We have employed a new technique developed by our group, Light Transmission Spectroscopy—combined with cell fractionation—to accurately measure PSDs over a wide size range: from ~10 nm to 3000 nm, which includes objects from the size of individual proteins to organelles. To date our experiments have included cultured human oral cells and spinach cells. These results show a power-law dependence of particle density with particle diameter, implying a universality of the packing distribution. We discuss modeling the cell as a self-similar (fractal) body comprised of spheres on all size scales. This goal of this work is to obtain a better understanding of the fundamental nature of particle packing within cells in order to enrich our knowledge of the structure, function, and interactions of sub-cellular nanostructures across cell types.