Abstract Submitted for the MAR17 Meeting of The American Physical Society

Water wave propagation over a controlled bathymetry¹ PHILIPPE PETITJEANS², PMMH - ESPCI, AGNS MAUREL³, Institut Langevin, VINCENT PAGNEUX⁴, LAUM, TOMASH BOBINSKI⁵, PMMH - ESPCI — An experimental study concerning the usage of metamaterials for water waves control is presented. Two applications are considered: Firstly, we show how to focus water waves using analogy to a group of metamaterials called epsilon-near-zero. The second considered application of metamaterials for water waves is hiding (cloaking) defects in a waveguide from the far field observer. The efficiency of bathymetry is evaluated in term of scattering properties. The influence of water wave dispersivity on the cancellation of scattering is also determined. Cloaking properties of the obtained bathymetry is experimentally confirmed using a wave packet characterized by broadband spectrum. In the second part, we show how to cloak a cylinder that is shifted from the centerline of a waveguide. Smooth cloaking bathymetry surrounding a cylinder is able to significantly reduce the scattering in broad range of frequencies. The experimental counterparts confirmed increase in transmission with respect to a reference case with flat bathymetry.

Philippe Petitjeans PMMH - ESPCI

Date submitted: 10 Nov 2016 Electronic form version 1.4

¹Agence Nationale de la Recherche (DYNAMONDE ANR-12- BS09-0027-01)

²Laboratoire de Physique et Mcanique des Milieux Htrognes, UMR CNRS 7636, ESCPI-Paris, France

³Institut Langevin, UMR CNRS 7587, ESCPI-Paris, France

⁴Laboratoire d'Acoustique de l'Universit du Maine, Le Mans, France

⁵Laboratoire de Physique et Mcanique des Milieux Htrognes, UMR CNRS 7636, ESCPI-Paris, France