Thermodynamic and electrical transport properties of the layered triangular Ce lattice compound CeAuAl$_4$Ge$_2$ SHENGZHI ZHANG, ANDREW GALLAGHER, YOU LAI, DAVID GRAF, TIGLET BESARA, KUAN-WEN CHEN, THEO SIEGRIST, LAURA GREENE, RYAN BAUMBACH, National High Magnetic Field Lab, Tallahassee — We report electronic and magnetic properties of single crystalline CeAuAl$_4$Ge$_2$. This compound crystallizes in a rhombohedral structure (S.G. #166) and may host geometrical magnetic frustration on the Ce sub-lattice. Electrical transport measurements show metallic behavior with a small residual resistivity ($\rho_0 = 3 \ \mu\Omega\text{cm}$). Quantum oscillations are seen in the ac magnetic susceptibility, which uncover a three-dimensional Fermi surface. Weak hybridization between the f- and conduction electron states is indicated by the simple-metallic temperature dependence of the electrical resistivity, the small electronic coefficient of the heat capacity, and the small charge carrier effective masses ($m^* \approx 0.4 - 1 \ m_e$). As evidenced by the magnetic susceptibility, there is an appreciable difference between the Curie-Weiss temperature ($\Theta \approx -90$ K) and the onset of the magnetic ordering temperature ($T_M = 1.4$ K), suggesting that magnetic frustration dominates the magnetic behavior. We will discuss the prospects for studying magnetic frustration in a simple metallic environment, and for tuning the magnetic ordering towards a frustrated quantum phase transition.

1This work was performed at the NHMFL, which is supported by NSF Cooperative Agreement No. DMR-0084173, the State of FL and the DOE. A portion of this work was supported by the NHMFL UCGP.

Shengzhi Zhang
National High Magnetic Field Lab, Tallahassee

Date submitted: 10 Nov 2016

Electronic form version 1.4