Abstract Submitted for the MAR17 Meeting of The American Physical Society

Electron density distribution of symmetric liquid crystal dimer linked by flexible alkyl chain¹ DENA MAE AGRA-KOOIJMAN, MICHAEL FISCH, Kent State University, Kent, OH, GAUTAM SINGH, Amity University, Noida, India, MUTHUKUMARASWAMY VENGATESAN, JANGKUN SONG, Sungkyunkwan University, Suwon, Republic of Korea, SATYENDRA KUMAR, University at Albany, Albany, NY — The results of x-ray scattering study combined with electron density distribution of a symmetric liquid crystal dimer linked by flexible chains, specifically 1",7"-bis(4-cyanobiphenyl-4'-yl) heptane (CB7CB) provide compelling new insights into the molecular organization in the nematic (N) and twist-bend nematic (N_{TB}) phases. The electron density (ρ) of the liquid crystal molecule has customarily been assumed to be uniform rather than a function of distance, $\rho(z)$ along the molecular axis. We introduce a functional model of the electron density using Gaussian distribution for different parts of the molecule. The observed diffraction peak at $d \sim 0.41L$ (L, molecular length) expected to appear at $d \sim L$, is found to primarily arise from the form factor, $F(q) = |f(q)|^2$ where f(q)is the Fourier transform of $\rho(z)$. Modeling the functional form of $\rho(z)$ was verified in the N phase of different rod-like molecules, with and without intercalation. The results further suggest that there is no intercalation of the dimer molecules in the N and N_{TB} phases.

¹Supported by US NSF under grant NSF-DMR-1410649 and the National Research Foundation of Korea grant MSIP (No. 2014R1A2A1A11054392)

Dena Mae Agra-Kooijman Kent State University, Kent, OH

Date submitted: 10 Nov 2016

Electronic form version 1.4