Correlation-driven topological phase transition from in-plane magnetized quantum anomalous Hall to Mott insulating phase in monolayer transition metal trichlorides

XIAN-LEI SHENG, Department of Applied Physics, Beihang University, Beijing 100191, China, BRANISLAV K. NIKOLIC, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716-2570, USA — Based on density functional theory (DFT) calculations, we predict that a monolayer of OsCl$_3$ (a layered material whose interlayer coupling is weaker than in graphite) possesses a quantum anomalous Hall (QAH) insulating phase generated by the combination of honeycomb lattice of osmium atoms, their strong spin-orbit coupling (SOC) and ferromagnetic ground state with in-plane easy-axis. The band gap opened by SOC is $E_g \simeq 67$ meV (or $\simeq 191$ meV if the easy-axis can be tilted out of the plane by an external electric field), and the estimated Curie temperature of such anisotropic planar rotator ferromagnet is T_{C350} K. The Chern number $C=-1$ signifies the presence of a single chiral edge state in nanoribbons of finite width, where we further show that edge states are spatially narrower for zigzag than armchair edges and investigate edge-state transport in the presence of vacancies at Os sites. Since 5d electrons of Os exhibit both strong SOC and moderate correlation effects, we employ DFT+U calculations to show how increasing on-site Coulomb repulsion U closes the gap of QAH insulator phase at U_c, and then reopens the gap of topologically trivial Mott insulator phase.

This work was supported by NSF Grant No. ECCS 1509094. The supercomputing time was provided by XSEDE, which is supported by NSF Grant No. ACI-1053575.

Branislav Nikolic
University of Delaware

Date submitted: 10 Nov 2016

Electronic form version 1.4