Effect of Pendant Side-Chain Sterics and Dipole Forces on Short Range Ordering in Random Polyelectrolytes

CHINOMSO NWOSU, University of Massachusetts, Amherst, TARA PANDEY, ANDREW HERRING, Colorado School of Mines, EDWARD COUGHLIN, University of Massachusetts, Amherst, UNIVERSITY OF MASSACHUSETTS, AMHERST COLLABORATION, COLORADO SCHOOL OF MINES COLLABORATION — Backbone-to-backbone spacing in polymers is known to be dictated by the length of the pendant side-chains. Dipole forces in random polyelectrolytes lead to ionic clusters with a characteristic spacing that can be observed by SAXS. Repulsion due to side-chain sterics will compete with dipole forces driving cluster formation in random polyelectrolytes. A model study on short range order in anion exchange membranes (AEMs) of quaternized P4VP-ran-PI is presented. Quaternization of P4VP with alkyl bromides having different numbers of carbons, C_nBr, introduces pendant side-chains as well as charges. X-ray scattering performed on PQ4VP-ran-PI(C_nBr) show that when n<5 the dipole forces dominate leading to the formation of ionic clusters. However, when n>4, the chains remain separated due to sterics, forming a distinct backbone-to-backbone spacing morphology. For n=3, both dipole clustering and backbone spacing can coexist. Crosslinking of the isoprene units increased the coexistence window from n=3 to n=6. Impedance measurements show that a maximum conductivity of 110mS/cm was obtained for PQ4VP-ran-PI(C3Br). A discussion on short range order due to competition, or counter balancing, of steric repulsion and dipole forces will be presented.

1US Army MURI project (W911NF1010520).

Chinomso Nwosu
University of Massachusetts, Amherst