Abstract Submitted for the MAR17 Meeting of The American Physical Society

Commensurate and incommensurate SDW and the superconducting dome in heavy electron systems¹ PEDRO SCHLOTTMANN, Florida State University — A nested Fermi surface together with interactions between the carriers may give rise to itinerant AF. We consider an electron and a hole pocket, separated by a wave vector \mathbf{Q} , and Fermi momenta k_{F1} and k_{F2} , respectively. The order is gradually suppressed by increasing the mismatch of the Fermi momenta and a QCP is obtained as $T_N \rightarrow 0$. If $\mathbf{Q} = \mathbf{G}/2$ (Umklapp), pairs of electrons can be transferred between the pockets. This process may lead to superconductivity and we investigate the conditions for a superconducting dome above the QCP [1]. If $\mathbf{Q} \neq \mathbf{G}/2$ eight phases need to be considered: commensurate and incommensurate SDW and CDW and four superconductivity phases, two of them with space modulated order parameter of the FFLO type with wave number $|\mathbf{Q} - \mathbf{G}/2|$. The RG equations are studied and a phase diagram with re-entrant SDW is obtained [2].

[1] P. Schlottmann, Phys. Rev. B 89, 014511 (2014).

[2] P. Schlottmann, Phys. Rev. B 92, 045115 (2015).

¹Work supported by the U.S. Department of Energy, grant No. DE-FG02-98ER45707

> Pedro Schlottmann Florida State University

Date submitted: 15 Nov 2016

Electronic form version 1.4