Abstract Submitted for the MAR17 Meeting of The American Physical Society

Nonlinear Elastoresistivity Response in the A_{1q} Symmetry Channel of the Iron Superconductor $Ba(Fe_{0.975}Co_{0.025})_2As_2$ JOHANNA C. PALM-STROM, Stanford University, JIUN-HAW CHU, Stanford University and University of Washington, IAN R. FISHER, Stanford University — Elastoresistivity relates changes in resistance of a material to strains that it experiences. Previously we have shown how the B_{2q} component of the elastoresistivity tensor is proportional to the nematic susceptibility, and hence can be used to infer a divergence of the nematic susceptibility approaching the tetragonal-to-orthorhombic structural phase transition in the Fe-based superconductors. In this talk I will introduce a new application of elastoresistance measurements for probing the resistivity response in the A_{1q} symmetry channel. This is not a nematic symmetry; rather, it describes the isotropic response to strains that the material experiences. This technique was performed on a stereotypical iron based superconductor, Ba(Fe_{0.975}Co_{0.025})₂As₂. We find that the response in the A_{1q} channel is nonlinear with a quadratic elastoresistance coefficient that diverges close to the tetragonal to orthorhombic structural transition. I will explain the significance of these measurements and how they fit with our understanding from previous measurements of the B_{2g} elastoresistance response.

> Johanna C. Palmstrom Stanford University

Date submitted: 10 Nov 2016

Electronic form version 1.4