Specific Heat Studies of a New 2D $S = 1/2$ Heisenberg Antiferromagnet, $[\text{Cu}(\text{pz})_2(2\text{-OHpy})_2](\text{PF}_6)_2$ CHRISTOPHER LANDEE, Department of Physics, Clark University, PAUL GODDARD, Department of Physics, Oxford University, WILL BLACKMORE, Department of Physics, Warwick University — We report on the zero-field specific heat (0.3 – 300 K) of a highly two-dimensional Heisenberg, $S = 1/2$ antiferromagnet (2D QHAF), $[\text{Cu}(\text{pz})_2(2\text{-OHpy})_2](\text{PF}_6)_2$ (pz = pyrazine and 2-OHpy = 2-hydroxypyridine). The copper atoms and pyrazine molecules form square layers of pyrazine-bridged copper(II) ions with the pyridone molecules normal to the layers, providing exceptional spacing between layers. The magnetic specific heat of this compound corresponds to an exchange strength $J = 6.6$ K, in excellent agreement from the value deduced from susceptibility experiments. The Néel temperature of this compound has been found to be 1.37 K by muon spin relaxation. $[1]$ The critical ratio $T_N/J = 1.37/6.6 \approx 2.1$ is the lowest value known for a molecular-based 2D QHAF and indicates a remarkable degree of isolation between the magnetic planes. $[1]$ T. Lancaster, S. Blundell et al, private communication.

Christopher Landee
Department of Physics, Clark University

Date submitted: 07 Mar 2017

Electronic form version 1.4