Abstract Submitted for the MAR17 Meeting of The American Physical Society

Lattice Thermal Conductivity in ε -Ga₂O₃ MICHAEL MEHL, Physics Department, US Naval Academy, Annapolis MD, N. NEEPA, V. D. WHEELER, D. J. MEYER, Electronic Science and Technology Division, US Naval Research Laboratory, Washington DC — β -Ga₂O₃ has seen increased popularity as a substrate and device material because of its large band gap and theoretical breakdown field, but it suffers from low thermal conductivity (κ). The question arises whether other polytypes of Ga₂O₃ might have higher thermal conductivity along with an ultrawide band gap. One potential phase is is ε -Ga₂O₃, which has a large band gap (4.9 eV) and a wurtzite-like crystal structure. Unfortunately, the ε phase is difficult to model from first principles, as several of the Ga Wyckoff positions are only partially occupied. In this talk we examine several structures which approximate ε -Ga₂O₃. For these structures we then calculate the lattice contribution to the bulk thermal conductivity tensor κ by computing second- and third-order force constants. We compare our results with experimental and theoretical data for β -Ga₂O₃.

> Michael Mehl US Naval Academy

Date submitted: 10 Nov 2016

Electronic form version 1.4