Abstract Submitted for the MAR17 Meeting of The American Physical Society

Origin of coverage dependence in photoreactivity of carboxylate on TiO₂(110) surface. IGOR LYUBINETSKY, Oregon State University, ZHI-TAO WANG, MICHAEL HENDERSON, Pacicfic Northwest National Lab — Employing scanning tunneling microscopy (STM) and ultraviolet photoelectron spectroscopy (UPS), we have observed a strong nonlinear decay of the reaction rate constant with coverage for the photolysis of trimethyl acetate on $TiO_2(110)$. This effect was not linked to intermolecular interactions of TMA but to the accumulation of the coadsorbed bridging hydroxyls (HO_b) deposited during (thermal) dissociative adsorption of the parent, trimethylacetic acid (TMAA). Confirmation of the hindering influence of HO_b groups was obtained by the observation that HO_b species originated from H₂O dissociation at O-vacancy sites have a similar hindering effect on TMA photochemistry. Though HO_b 's are photoinactive on $TiO_2(110)$ under ultrahigh vacuum conditions, UPS results show that these sites trap photoexcited electrons, which in turn likely (electrostatically) attract and neutralize photoexcited holes, thus suppressing the hole-mediated photoreactivity of TMA. This negative influence of surface hydroxyls on hole-mediated photochemistry is likely a major factor in other anaerobic photochemical processes on reducible oxide surfaces.

> Igor Lyubinetsky Oregon State University

Date submitted: 10 Nov 2016

Electronic form version 1.4