Abstract Submitted for the MAR17 Meeting of The American Physical Society

Enhancement of hidden order and antiferromagnetism in Fe and Os substituted URu₂Si₂ under pressure. CHRISTIAN WOLOWIEC, NORAVEE KANCHANAVATEE, KEVIN HUANG, SHENG RAN, M. BRIAN MAPLE, Univ of California - San Diego — We present electrical resistivity measurements made under pressure for the Fe and Os substituted URu₂Si₂. The parent compound URu_2Si_2 exhibits a hidden order (HO) phase below T_0 ambient pressure. A phase transition from HO to a large moment antiferromagnetic (LMAFM) phase is induced by applying pressure P or by substituting Fe or Os for Ru ions. While the substitution of smaller Fe ions reduces the unit cell volume thus creating a positive chemical pressure P_{ch} , the substitution of larger Os ions results in a negative $P_{\rm ch}$. As Fe concentration (x) is increased, the critical pressure $P_{\rm c}$ forcing the HO to LMAFM phase transition is reduced from 1.4 GPa at x = 0 to 0 GPa = 0.15. By converting x to $P_{\rm ch}(x)$, we found that $P_{\rm ch}(x)$ + $P_{\rm c}$ ≈ 1.5 GPa at the phase transition. These results suggest that $P_{\rm ch}$ behaves like external Pin inducing the HO \rightarrow LMAFM phase transition. However, we also found that as the Os concentration (y) is increased, a smaller P_c is required to induce the HO \rightarrow LMAFM phase transition: $P_c \sim 1.4$ GPa at y = 0 reduces to $P_c \sim 0$ GPa = 0.065. This is contrary to what one would expect from a negative $P_{\rm ch}$ effect. Hence, the Os substitution study suggests that $P_{\rm ch}$ is not solely responsible for inducing the LMAFM phase.

¹The pressure research and materials synthesis were supported by the U.S. DOE under Grant No. DE-NA0002909 and DE-FG02-04-ER46105, respectively.

Christian Wolowiec Univ of California - San Diego

Date submitted: 10 Nov 2016 Electronic form version 1.4