3D integration of superconducting qubits with bump bonds: Part 1

J. MUTUS, Google, Santa Barbara, B. FOXEN, UC Santa Barbara, E. LUCERO, J. KELLY, Y. YANG, A. YU, M. BALDWINSON, Google, Santa Barbara, Z. CHEN, B. CHIARO, A. DUNSWORTH, C. NEILL, C. QUINTANA, J. WENNER, UC Santa Barbara, JOHN. M. MARTINIS, Google, Santa Barbara, UC Santa Barbara, GOOGLE QUANTUM HARDWARE TEAM — Advanced fabrication techniques focusing on eliminating lossy dielectrics and meticulously cleaning interfaces have enabled increased quantum coherence in superconducting quantum bits (qubits). However, in order to architect a large system of interconnected qubits, dense control lines must be routed in 3D while preserving qubit coherence. We report on our development of superconducting-indium-bump flip-chip technology for connecting a multi-layer signal routing carrier chip to a pristine qubit chip. We will report on process development for integrating indium into our qubit fabrication as well as the performance of this superconducting link from DC to microwave frequencies.