Selective area growth of BaTiO$_3$ for ferroelectric field-effect transistor application

PATRICK PONATH, AGHAM POSADAS, Univ of Texas, Austin, MICHAEL SCHMIDT, PAUL HURLEY, RYAN DUFFY, University College Cork, JIAN WANG, CHADWING YOUNG, University of Texas at Dallas, ALEX DEMKOV, Univ of Texas, Austin — Titanates are an important class of materials with many interesting functional properties and applications for non-volatile memory, i.e. BaTiO$_3$, which is a promising candidate for the realization of a ferroelectric field-effect transistor. However, the difficulty of chemically etching titanates has hindered their commercial use in device manufacturing so far. Here, we propose a technique to circumvent this problem. Using molecular beam epitaxy, we grew compressively strained ferroelectric BaTiO$_3$, within photolithographically defined openings of a sacrificial SiO$_2$ layer on germanium (001) and strontium titanate (001). Etching away the sacrificial SiO$_2$ can reveal isolated nanoscale gate stacks circumventing the need to etch the titanate thin film. Different SiO$_2$ processing techniques are compared for Ge(001) and Nb:STO(001) substrates and the thermal stability of the SiO$_2$ pattern as well as the resulting surface roughness after a thermal anneal will be reported. Using X-ray diffraction we find that the BaTiO$_3$ film is tetragonal with the longer c-axis being out of plane, which is a requirement for the ferroelectric field effect transistor. The crystal quality of the BaTiO$_3$ films grown in the openings is confirmed using RHEED and cross-sectional transmission electron microscopy.

Patrick Ponath
Univ of Texas, Austin