Abstract Submitted
for the MAR17 Meeting of
The American Physical Society

Weak ferromagnetism and short range polar order in NaMnF$_3$
thin films1 AMIT KC, University of California Santa Cruz, PAVEL BORISOV,
West Virginia University, VLADIMIR SHVARTSMAN, University Duisburg-Essen,
DAVID LEDERMAN, University of California Santa Cruz — The orthorhombically
distorted perovskite NaMnF$_3$ has been predicted to become ferroelectric if an $a = c$
distortion of the bulk $Pnma$ structure is imposed. In order to test this prediction,
NaMnF$_3$ thin films were grown on SrTiO$_3$ (100) single crystal substrates via
molecular beam epitaxy. The best films were smooth and single phase with four
different twin domains. In-plane magnetization measurements revealed the presence
of antiferromagnetic ordering with weak ferromagnetism below the Néel tempera-
ture $T_N = 66$ K. For the dielectric studies, NaMnF$_3$ films were grown on a 30 nm
SrRuO$_3$ (100) layer used as a bottom electrode grown via pulsed laser deposition.
The complex permittivity as a function of frequency indicated a strong Debye-like
relaxation contribution characterized by a distribution of relaxation times. A power-
law divergence of the characteristic relaxation time revealed an order-disorder phase
transition at 8 K. The slow relaxation dynamics indicated the formation of super-
dipoles (superparaelectric moments) that extend over several unit cells, similar to
polar nanoregions of relaxor ferroelectrics.

1This work was supported by the National Science Foundation (grant 1434897) and
the WVU Shared Research Facilities at West Virginia University.

Amit KC
University of California Santa Cruz

Date submitted: 10 Nov 2016

Electronic form version 1.4