Correlators in simultaneous measurement of non-commuting qubit observables

JUAN ATALAYA, University of California, Riverside,
SHAY HACOHEN-GOURGY, LEIGH S. MARTIN, IRFAN SIDDIQI, University of California, Berkeley,
ALEXANDER N. KOROTKOV, University of California, Riverside — We consider simultaneous continuous measurement of non-commuting qubit observables and analyze multi-time correlators \(\langle i_{\kappa_1}(t_1) \cdots i_{\kappa_N}(t_N) \rangle \) for output signals \(i_{\kappa}(t) \) from the detectors. Both informational ("spooky") and phase backactions from cQED-type measurements with phase-sensitive amplifiers are taken into account. We find an excellent agreement between analytical results and experimental data for two-time correlators of the output signals from simultaneous measurement of qubit observables \(\sigma_x \) and \(\sigma_\varphi = \sigma_x \cos \varphi + \sigma_y \sin \varphi \). The correlators can be used to extract small deviations of experimental parameters, e.g., phase backaction and residual Rabi frequency. The multi-time correlators are important in analysis of Bacon-Shor error correction/detection codes, operated with continuous measurements.