MAR17-2016-004304

Abstract for an Invited Paper for the MAR17 Meeting of the American Physical Society

Interface engineering of metal-oxygen bonds as a new route for exploring functional properties of transition metal oxides DAISUKE KAN, Institute for Chemical Research Kyoto University

Metal-oxygen bonds in transition-metal oxides are responsible for a broad spectrum of functional properties, and atomiclevel control of the bonds is a key for developing future oxide-based electronics. Artificial heterostructures with chemically abrupt interfaces consisting of dissimilar oxides have provided a good platform for engineering novel bonding geometries that could lead to emergent phenomena not seen in bulk oxides. Here we show that the Ru-O bonds (or oxygen coordination environments) of a perovskite, SrRuO₃, can be controlled by heterostructuring SrRuO₃ with a thin (0–4 monolayers thick) $Ca_{0.5}Sr_{0.5}TiO_3$ layer grown on GdScO₃ substrates [1]. We found that a Ru-O-Ti bond angle characterizing the SrRuO₃/Ca_{0.5}Sr_{0.5}TiO₃ interface structure can be engineered by layer-by-layer control of the $Ca_{0.5}Sr_{0.5}TiO_3$ layer thickness, and that the engineered Ru-O-Ti bond angle not only stabilizes a Ru-O-Ru bond angle never seen in bulk SrRuO₃ but also tunes the magnetic anisotropy in the entire SrRuO₃ layer. The results demonstrate that interface engineering of the metal-oxygen bonds is a good way to control additional degrees of freedom in designing functional oxide heterostructures. [1] D. Kan et al Nature Materials 15, 432 (2016).