Abstract Submitted for the MAR17 Meeting of The American Physical Society

Investigation of short and ballistic coupling in vertical NbSe₂ - graphene - NbSe₂ Josephson junctions MINSOO KIM, GEON-HYOUNG PARK, JONGYOON YI, JAE HYEONG LEE, JINHO PARK, HU-JONG LEE, Pohang University of Science and Technology — 2H-NbSe₂ is a layered two-dimensional superconducting material, which can be constructed into a van der Waals heterostructure with versatile functionality. Here we fabricated a vertically stacked NbSe₂ - graphene - NbSe₂ heterostructure by the dry transfer technique, where defect-free contact via van der Waals force provides the high interfacial transparency. Insertion of an atomically thin graphene layer between two NbSe₂ flakes ensures the formation of highly coherent proximity Josephson coupling. Observed temperature dependence of the junction critical current (I_c) and large value of I_cR_n product (as large as $2.3\Delta_{NbSe2}$) reveal the short and ballistic Josephson coupling characteristics. Large junction critical current density of ~10⁴ A/cm², multiple Andreev reflection in the subgap structure of the differential conductance, and magnetic field modulation of I_c also suggest the strong Josephson coupling via the graphene layer.

Minsoo Kim Pohang University of Science and Technology

Date submitted: 10 Nov 2016

Electronic form version 1.4