Abstract Submitted
for the MAR17 Meeting of
The American Physical Society

Molecular Mechanisms in the shock induced decomposition of FOX-7

ANKIT MISHRA, SUBODH C. TIWARI, CACS, USC, AIICHIRO
NAKANO, PRIYA VASHISHTA, RAJIV KALIA, CACS, Department of Physics
and Astronomy, Department of Chemical Engineering and Materials Science, CACS
TEAM — Experimental and first principle computational studies on FOX 7 have
either involved a very small system consisting of a few atoms or they did not take
into account the decomposition mechanisms under extreme conditions of tempera-
ture and pressure. We have performed a large-scale reactive MD simulation using
ReaxFF-lg force field to study the shock decomposition of FOX 7. The chemical
composition of the principal decomposition products correlates well with experi-
mental observations. Furthermore, we observed that the production of N$_2$ and H$_2$O
was inter molecular in nature and was through different chemical pathways. More-
over, the production of CO and CO$_2$ was delayed due to production of large stable
C,O atoms cluster. These critical insights into the initial processes involved in the
shock induced decomposition of FOX-7 will greatly help in understanding the factors
playing an important role in the insensitiveness of this high energy material.

1This research is supported by AFOSR award no. FA9550-16-1-0042.