Parameterization of Nonbonded Interactions between Molybdenum Disulfide and Water

MOHAMMAD HEIRANIAN, YANBIN WU, NARAYANA ALURU, University of Illinois at Urbana-Champaign — Recently, single-layer nanoporous molybdenum disulfide (MoS$_2$) membranes have been found to be a promising material in various applications such as DNA sequencing, water purification and power generation. To understand the physics taking place in such nanofluidics systems, an accurate forcefield is needed to describe the van der Waals and coulombic interactions between MoS$_2$ and water. In this work, the high-accuracy adiabatic-connection fluctuation-dissipation based random phase approximation (RPA) method is used to implement water-MoS$_2$ parameters for use in molecular dynamics simulations. The accuracy of the developed parameters is validated by comparing the resulting water-MoS$_2$ contact angle, an interface property, from MD with that of experiments. The accurate description of water-MoS$_2$ interface, studied here, will facilitate the future studies of the above-mentioned applications.