Abstract Submitted
for the MAR17 Meeting of
The American Physical Society

Probing the 3He distribution in coexisting liquid and solid 4He1
ZHIGANG CHENG, JOHN BEAMISH, University of Alberta — Substantial attention has been focused on recent experiments of 4He mass flow across solid-liquid interfaces and within completely solid samples. The flow is suppressed by 3He impurities and appears to involve superfluid pathways: microscopically thin superfluid layers, dislocations with superfluid cores allowing superclimb, or both. It is clear that 3He accumulates in the liquid 4He and on solid-liquid interfaces, depleting the 3He concentration in the solid at low temperature. Here we report a preliminary study of the 3He concentration in the liquid phase of solid-liquid coexisting samples. By measuring the capacitance between two concentric cylinders immersed in the liquid helium, we are able to detect movement of 3He between the solid and liquid phases, thanks to the dependence of the dielectric constant on 3He concentration. We measure the migration of 3He into the liquid at low temperatures and find that the time constant for the concentrations to equilibrate is longer at lower temperature.

1This project is supported by NSERC, Canada

Zhigang Cheng
University of Alberta

Date submitted: 11 Nov 2016

Electronic form version 1.4