Abstract Submitted for the MAR17 Meeting of The American Physical Society

Effects of pressure on the magnetic anisotropy of ferromagnetic insulator $Cr_2Ge_2Te_6^1$ ZHISHENG LIN, MARK LOHMANN, CHI TANG, JUNXUE LI, Univ of California - Riverside, WENYU XING, JIANGNAN ZHONG, SHUANG JIA, WEI HAN, Peking University, Beijing, China, JING SHI, Univ of California - Riverside — Cr₂Ge₂Te₆ is an interesting atomically layered ferromagnetic insulator with space group $R\overline{3}$ that has a Curie temperature of $\tilde{}61~\mathrm{K}$ and a band gap of ~0.2 eV. Owing to the van der Waals nature of the crystal structure, both electronic and magnetic properties depends on the interlayer coupling; therefore, it is interesting to study the effects of the interlayer spacing on physical properties. In this study, we apply a hydrostatic pressure to a CGT crystal up to 2000 PSI while measuring its magneto-transport properties with an external magnetic field applied along the c-axis of CGT. With increasing pressure, we observe a systematic increase in the anisotropic magnetoresistance ratio accompanied by a decrease in the band gap. In the meantime, the saturation field in the magnetoresistance increases as the pressure increases, indicating that the magnetization gradually favors to be in the ab-plane. This induced anisotropy change could be attributed to the increased interlayer coupling as the layers are bought closer to each other.

¹DOE BES Award No. DEFG02-07ER46351

Zhisheng Lin Univ of California - Riverside

Date submitted: 11 Nov 2016 Electronic form version 1.4