Polarcatrosphysy and electronic reconstructions in LaAlO$_3$/SrMnO$_3$ (111) digital heterostructures1 FANG HOU, Department of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou, PR China, SHENG JU, TIAN-YI CAI, Department of Physics, Soochow University, Suzhou, PR China — Based on extensive first-principle density functional theory calculations, we report different electronic phases at the LaAlO$_3$/SrMnO$_3$ (111) heterointerfaces. In the n-type LaAlO$_3$/SrMnO$_3$ (111) superlattices, electrons transferred from LaAlO$_3$ component distribute unevenly in SrMnO$_3$ component and occupy Mn’s e_g orbital, inducing half-metallic ferromagnetism in the framework of Zener double exchange. With increasing SrMnO$_3$ layers, the sum of every Mn magnon keep a constant suggesting a fixed number of charge transferred from LaAlO$_3$ component. For p-type superlattices, holes reside almost uniformly at the SrO$_3$ and LaO$_3$ plane driven by the polar electric field in the LaAlO$_3$ and SrMnO$_3$ component. With absence of the e_g states at the Mn sites, bulk-like G-type AFM ordering were obvious with almost imperceptible octahedron rotation and tilting. But p-type superlattices are metallic because of hole transfer. Our studies demonstrate the potential applications of perovskite heterointerfaces in spintronic devices.

1This work was supported by the Foundation Research Project of Jiangsu Province (The Natural Science Fund) under Grant No. 20140278.

Fang Hou
Suzhou University of Science and Technology

Date submitted: 11 Nov 2016