Abstract Submitted for the MAR17 Meeting of The American Physical Society

Polarcatrosphy and electronic reconstructions in $LaAlO_3/SrMnO_3$ (111) digital heterostructures¹ FANG HOU, Department of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou, PR China, SHENG JU, TIAN-YI CAI, Department of Physics, Soochow University, Suzhou, PR China — Based on extensive first-principle density functional theory calculations, we report different electronic phases at the $LaAlO_3/SrMnO_3$ (111) heterointerfaces. In the n-type LaAlO₃/SrMnO₃ (111) supperlattices, electrons transferred from LaAlO₃ component distribute unevenly in SrMnO₃ component and occupy Mn's eg orbital, inducing half-metallic ferromagnetism in the framework of Zener double exchange. With increasing SrMnO₃ layers, the sum of every Mn magmon keep a constant suggesting a fixed number of charge transferred from $LaAlO_3$ component. For p-type superlattices, holes reside almost uniformly at the SrO_3 and LaO_3 plane drived by the polar electric field in the $LaAlO_3$ and $SrMnO_3$ component. With absence of the eg states at the Mn sites, bulk-like G-type AFM ordering were obvious with almost imperceptible octahedron rotation and tilting. But p-type superlattices are metallic because of hole transfer. Our studies demonstrate the potential applications of perovskite heterointerfaces in spintronic devices.

¹This work was supported by the Foundation Research Project of Jiangsu Province (The Natural Science Fund) under Grant No. 20140278.

> Fang Hou Suzhou University of Science and Technology

Date submitted: 11 Nov 2016

Electronic form version 1.4