Unusual phase boundary and altered Fermi surface in \(\text{CeOs}_4\text{Sb}_{12} \) at high magnetic fields\(^1\) PEI-CHUN HO, CSU-Fresno, JOHN SINGLETON, NHMFL/LANL, PAUL A. GODDARD, U of Warwick, UK, FEDOR F. BAL-AKIREV, SHALINEE CHIKARA, NHMFL/LANL, M. BRIAN MAPLE, UC San Diego, TATSUYA YANAGISAWA, Hokkaido U, Jpn — The filled skutterudite compounds \(\text{CeOs}_4\text{Sb}_{12} \) is a 1K antiferromagnetic (AFM) semimetal and candidate topological insulator. Using magnetization \((M) \), MHz-conductivity and electrical resistivity \((\rho) \) data recorded at magnetic fields of up to \(\mu_0H = 60 \) T and temperature \(T \) down to 0.4 K, we map out the \((H,T) \) phase diagram. At low \(T \) and low \(H \) (L phase), the Ce \(4f \) electron is delocalized, yielding heavy quasiparticles with a small Fermi surface, while at high \(T \) and high \(H \) (H phase) the \(4f \) electron is quasi-localized, leaving a single, almost spherical Fermi surface of light-mass holes. The behavior of \(\rho \) and \(dM/dH \) on crossing the L-H boundary, plus comparisons with bandstructure calculations, suggest that the L-H phase transition in \(\text{CeOs}_4\text{Sb}_{12} \) is similar in origin to the \(\alpha - \gamma \) transition in Ce and its alloys. However, interplay between the free-energy contributions of the AFM and L phases results in a very unusual curvature of the phase boundary at low \(T \).

\(^1\)Research at CSU-Fresno is supported by NSF DMR-1506677; at UCSD by NSF DMR-1206553 and US DOE DEFG02-04ER46105; at NHMFL by DOE, NSF, and FL; at Hokkaido U. by JSPS KAKENHI 26400342, 15K05882, and 15K21732.

Pei-Chun Ho

CSU-Fresno

Date submitted: 11 Nov 2016

Electronic form version 1.4