Vortex-antivortex structures in PbTiO$_3$/SrTiO$_3$ superlattices1

JAVIER JUNQUERA, PABLO GARCÍA-FERNÁNDEZ, Universidad de Cantabria, PABLO AGUADO-PUENTE, CIC-Nanogune, JORGE ÍÑIGUEZ, Luxembourg Institute of Science and Technology — When ultrathin ferroelectric layers of PbTiO$_3$ are embedded in superlattices with an incipient ferroelectric, such as SrTiO$_3$, the interplay between elastic, electrostatic, and gradient energies produce complex patterns of the electrical polarization. In particular, nanometer scale of vortex-antivortex arrays have been recently detected,2 and exotic properties such as the emergence of a negative capacitance have been measured.3 A realistic atomic simulation of these structures is difficult due to the large number of atoms required and the small differences in energies between the relevant phases. Here we use a recently developed second-principles method 3, 4 that treats all the lattice degrees of freedom with high accuracy at a modest computational cost. The effect of the periodicity, strain, temperature, and external electric fields in the formation of vortex-antivortex pairs is explored. We predict that some of the structures are chiral, that would make them optically active, supporting x-ray circular dichroism.

1Financial support from MINECO Grant No. FIS2015-64886-C5-2-P
2Yadav et al., Nature 530, 198 (2016)