Abstract Submitted for the MAR17 Meeting of The American Physical Society

Water adsorption $Sr_3Ru_2O_7$ and on Ca₃Ru₂O₇ WERNFRIED MAYR-SCHMOELZER, ULRIKE DIEBOLD, DANIEL HALWIDL, FLORIAN MITTENDORFER, GARETH PARKINSON, JIRI PAV-ELEC, JOSEF REDINGER, MICHAEL SCHMID, BERNHARD STOEGER, Inst. of Applied Physics, TU Wien, Vienna, DAVID FOBES, ZHIQIANG MAO, JIN PENG, Dept. of Physics, Tulane University, New Orleans — Perovskite oxides are promising materials for a wide range of applications as diverse as sensors, fuel cells and catalysts. Surprisingly an atomic scale knowledge of their surface chemistry is still rather poor. Here we present a combined DFT, low-temperature STM and XPS study of the first monolayer H₂O formation on the (001) surfaces of two Ruddelsden-Popper type compounds, Sr₃Ru₂O₇ and Ca₃Ru₂O₇. Both cleave nicely, yielding flat surfaces of rocksalt-like SrO and CaO type. Adsorbed H₂O monomers dissociate on both surfaces by transferring a proton to an apical O while the remaining OH resides at a nearby Sr-Sr or Ca-Ca bridge, respectively. The different tilting and rotations of the RuO₆ octahedra in the Sr and Ca perovskites cause different behaviour of the dissociated fragments: for Sr₃Ru₂O₇ a lone Sr-Sr bridge OH circles the apical OH with an activation energy of $\approx 187 \text{meV}$. At higher coverages dimers, followed by chains and cages are formed[1]. In contrast, the dissociated monomer fragments are immobile on $Ca_3Ru_2O_7(001)$ and only chains along the [010] direction occur. [1]D. Halwidl et. al., Nature Materials, 15(4), 450-455.

> Wernfried Mayr-Schmlzer Vienna Univ of Technology

Date submitted: 11 Nov 2016 Electronic form version 1.4