Abstract Submitted for the MAR17 Meeting of The American Physical Society

Characteristics of Al_2O_3 film by introducing additional oxygen and oxygen vacancy using Pt catalytic KAZUYA YUGE, Shibaura Institute of Technology, TOSHIHIDE NABATAME, AKIHIKO OHI, NAOKI IKEDA, TOY-OHIRO CHIKYOW, National Institute for Materials Science, TOMOJI OHISHI, Shibaura Institute of Technology — Al₂O₃ is an attractive gate insulator for gallium nitride power device. It remains a big issue of mobility degradation because of oxygen vacancy (Vo) of Al₂O₃ film. Furthermore, little is known about influence of the Vo of Al_2O_3 on transistor property. In this paper, we study characteristics of Al₂O₃ insulator by introducing additional oxygen and Vo. We prepared p-Si(100)/SiO₂/Al₂O₃/Pt capacitors. These capacitors were annealed at 300 - 600 C in N₂, O₂ and 3% H₂ ambient to introduce additional oxygen and Vo into Al₂O₃ using Pt catalytic effect. The fixed charge density in Al₂O₃ film was negligible small from linear relationship between Vfb and Al₂O₃ thickness. The Vfb shift of capacitors which annealed at 300 - 600 C in N_2 ambient exhibited about +0.6 V compared to the ideal Vfb. This is dominantly due to the dipole at Al_2O_3/SiO_2 interface. In contrast, the Vfb shift increased from +0.6 to +1.9 V with increasing the annealing temperature in O_2 ambient. The strength of the dipole increase because additional oxygen introduced by Pt catalytic effect piled up at Al₂O₃/SiO₂ interface. This suggests that the oxygen concentration at Al_2O_3/SiO_2 interface plays an important role of Vfb shift.

> Kazuya Yuge Shibaura Institute of Technology

Date submitted: 15 Nov 2016 Electronic form version 1.4