Towards Jellybean-Coupled Spin Qubits

SEBASTIAN PAUKA, XANTHE CROOT, DAVID REILLY, The University of Sydney, JOHN WATSON, MICHAEL MANFRA, Purdue University — Semiconductor-based spin qubits are interesting platforms for investigating the scalability of elementary quantum computers. Here, we present results taken on a GaAs five-quantum dot device in which an intermediary, multi-electron jellybean dot is used as a coherent, exchange-based spin coupler. Our geometry, together with the use of positively biased accumulation gates, allows for the routine loading and charge sensing of all dots in the 5-dot array. Control of the jellybean dot and capacitive coupling of two singlet-triplet qubits is demonstrated.

1ARC Centre of Excellence for Engineered Quantum Systems, Microsoft Station Q Sydney, The University of Sydney
2ARC Centre of Excellence for Engineered Quantum Systems, Microsoft Station Q Sydney, The University of Sydney
3ARC Centre of Excellence for Engineered Quantum Systems, Microsoft Station Q Sydney, The University of Sydney
4Department of Physics and Astronomy, Birck Nanotechnology Center, School of Materials Engineering and School of Electrical and Computer Engineering, Purdue University
5Department of Physics and Astronomy, Birck Nanotechnology Center, School of Materials Engineering and School of Electrical and Computer Engineering, Microsoft Station Q Purdue, Purdue University

Sebastian Pauka
The University of Sydney

Date submitted: 11 Nov 2016

Electronic form version 1.4