Many-body delocalization with random vector potentials1 CHEN CHENG, RUBEM MONDAINI, Beijing Computational Science Research Center — In this talk we present the ergodic properties of excited states in a model of interacting fermions in quasi-one dimensional chains subjected to a random vector potential. In the non-interacting limit, we show that arbitrarily small values of this complex off-diagonal disorder triggers localization for the whole spectrum; the divergence of the localization length in the single particle basis is characterized by a critical exponent ν which depends on the energy density being investigated. However, when short-ranged interactions are included, the localization is lost and the system is ergodic regardless of the magnitude of disorder in finite chains. Our numerical results suggest a delocalization scheme for arbitrary small values of interactions. This finding indicates that the standard scenario of the many-body localization cannot be obtained in a model with random gauge fields.

1This research is financially supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. U1530401 and 11674021). RM also acknowledges support from NSFC (Grant No. 11650110441).