Bell pair creation in current of Kondo-correlated dot

RUI SAKANO, Institute for solid state physics, the university of Tokyo, AKIRA OGURI, YUNORI NISHIKAWA, Department of physics, Osaka city university, EISUKE ABE, Spintronics research center, Keio university — Recently, local-Fermi-liquid properties in non-linear currents and shot noises through the Kondo dot have been investigated both theoretically and experimentally. We suggest a new entangled-electron-pair generator utilizing mechanism of quasiparticle-pair creation which has been observed as enhancement of shot noise in the quantum dot. Using the renormalized perturbation theory for an orbital-degenerate impurity Anderson model and the full counting statistics, we calculate the Clauser-Horne-Shimony-Holt type Bell's correlator for currents through correlated two different channels of a Kondo correlated dot. It is shown that residual exchange-interactions of the local-Fermi-liquid create spin-entangled quasiparticle-pairs in nonlinear current and this results in violation of the Bell's inequality.

1This work was partially supported by JSPS KAKENHI Grant Numbers JP26220711, JP26400319, JP15K05181 and JP16K17723.