Core and shell size dependences on strain in core@shell Prussian blue analogue (PBA) nanoparticles and the effect on photomagnetism.1

J. M. CAIN, C. F. FERREIRA, A. C. FELTS, S. A. LOCICERO, J. LIANG, D. R. TALHAM, Dept. of Chemistry, Univ. of Florida, M. W. MEISEL, Dept. of Physics and NHMFL, Univ. of Florida — Rb\textsubscript{x}Co[Fe(CN)\textsubscript{6}]\textsubscript{y}\@K\textsubscript{a}Ni[Cr(CN)\textsubscript{6}]\textsubscript{b} core@shell heterostructures have been shown to exhibit a photoinduced decrease in magnetization that persists up to the $T_c = 70$ K of the KNiCr-PBA component, which is not photoactive as a single-phase material. A magnetomechanical effect can explain how the strain in the shell evolves from thermal and photoinduced changes in the volume of the core. Moreover, a simple model has been used to estimate the depth of the strained region of the shell, but only one size of core (347 ± 35 nm) has been studied. Since the strain depth in the shell is expected to be dependent on the size of the core, three distinct RbCoFe-PBA core sizes were synthesized, and on each, three different KNiCr-PBA shell thicknesses were grown. The magnetization of each core-shell combination was measured before and after irradiation with white light. Our results suggest the strain depth, as expected, increases from ≈ 56 nm in heterostructures with a core size of 328 ± 29 nm to more than 90 nm in heterostructures with a core size of 575 ± 113 nm. The data from the smallest core size also shows features indicating the model may be too simple.

1Supported by NSF DMR-1405439 (DRT) and DMR-1202033 (MWM).